
Buletin Teknik Elektro dan Informatika 
(Bulletin of Electrical Engineering and Informatics) 
Vol.2, No.1, March 2013, pp. 35~44 
ISSN: 2089-3191     35 

  

Received November 15, 2012; Revised January 8, 2013; Accepted January 24, 2013 

 

Reliability Assessment of Power Generation System 
with Wind Farm 

 
 

Wang Xin-Wei1, Zhang Jian-Hua*1, Jiang Cheng1, Yu Lei1, Shang Jingfu2 
1State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China 

Electric Power University, Beijing 102206, China 
2SGCC AC Engineering Construction Subsidiary Company, Beijing 100052, China 

*Corresponding author, e-mail: jhzhang001@163.com*; jc_2002@163.com 
 
 

Abstract 
 The reliability of power generation system with wind farm is evaluated based on Monte-Carlo 

simulation, and in the reliability assessment the randomness of wind speed and power load, failure rate of 
wind turbine generator(WTG) and conventional generator are take into account. Monte-Carlo simulation 
used in power generation system with wind power need large sample size and has low efficiency. So this 
paper proposes an improved Monte Carlo method (IMC) based on the combination of Latin Hypercube 
Sampling and Cholesky decomposition, this IMC method is effective to improve sample values coverage of 
random variables input spaces and the sampling efficiency. The calculation and analysis of improved 
IEEE-RTS 79 reliability test systems show that the proposed Assessment algorithm is effective. 
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1. Introduction 

Wind power is recognized as one of an ideal renewable energy power generation and 
large-scale development of wind power is benefit for energy development and environmental 
protection. However, due to the wind power output characteristics of randomness, intermittent 
and volatility, large-scale wind power integration will be seriously affect the grid voltage stability, 
system stability, and scheduling [1]. So it is an urgent need to assess power system reliability 
and security in the case of large-scale wind power integration. 

Domestic and foreign scholars have made a preliminary study on the reliability of wind 
turbine. In paper [2], the reliability model of wind turbine is built considering the aspects of aging 
and failure of the unit, to establish the reliability using Markov process, but it ignores the drop-
power operation state of wind turbine. In paper [3], Wind speed within the assessment period is 
divided into several periods, but this method is only applicable to long-term evaluation, it is 
difficult to be divided into several sections because of the randomness of the larger of a short 
period of time wind speed changes. In paper [4], wind speed of Weibull distribution is introduced 
to establish the reliability model of wind turbine, but this model does not take the failures and 
derating of wind turbine into account. Taking into account the stochastic nature of wind energy 
and wind power generating units forced outage to establish the reliability model of wind turbine, 
but it did not consider the derating state [5]. 

Monte Carlo method is often used for large-scale power system reliability analysis due 
to its simple principle and easy to implement [6], but in order to get higher accuracy often 
requires a large number of sampling samples and sampling time [7-9]. Literature [10-12] use 
separatist and Russian roulette method, importance sampling method and control variables 
method, respectively to reduce the sample variance and improve the sampling efficiency, but 
they all have not enough suitability. 

In response to these above problems, the reliability model of the wind farm is 
established considering the randomness of the wind speed, the wind farm wake effects and the 
failure and derating state of the wind turbine. Considering the large sample size and low 
computational efficiency in the Monte Carlo method, the combination of Latin Hypercube 
sampling and Cholesky decomposition is proposed. This proposed method is effective in 
improving the sample values coverage of random variables input spaces and the sampling 
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efficiency. The assessment procedures are created in MATLAB, and improved IEEE-RTS79 
example calculation and analysis are carried out, the results verify the effective of the 
assessment method. 
 
 
2. Reliability Model of Wind Farm 
2.1. Wind Speed Model 

A large number of wind speeds are measured, statistical results show that, the wind 
speed variation subject to the two-parameter Weibull distribution [13]. Use random variable V 
represents the size of the wind speed; its distribution function can be expressed as: 
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Where kW  is shape parameter; cW  is the scale parameter whose value reflects the average 

wind speed of the wind farm; V stands for a given wind speed, the unit is m/s. 
Make 
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Where U is uniformly distributed random number in [0, 1]. 
According to equation (2) wind speed can be expressed as: 
 

   kW
c UWV /1ln         (3) 

 
Due to the impact of the wake effects in large wind farms, the wind speed located in the 

downwind will be lower than on the wind direction, in this paper the Jensen models is employed 
to simulate the wake effects of the flat terrain[14], shown in Figure 1. 
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Figure 1. Jensen wake effect model 

 
 

Where, R  is the radius of turbine impeller, WR  is the radius of the wake, 0V  represents 

Average wind speed, TV  is wind speed of the blade, xv  is affected wind speed by the wake, X  

is the distance between the two turbines. 
According to Figure 1, the affected wind speed by wake effects can be calculated as: 
 

   




















2
2/1

T0x 111
kXR

R
CVv       (4) 

 
where, k and TC  the stand for flow declined coefficient of wake and thrust coefficient of wind 

turbine, respectively. 
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2.2. Wind Energy Conversion Model 
After a large number of studies, there is a specific relationship between the output 

power of the wind turbine and wind speed curve, called a wind turbine power curve A typical 
wind turbine power curve [15] is shown as: 

 
 

 
 

Figure 2. Wind turbine power curve 
 
 
where, vci is cut-in wind speed, vco is cut-out wind speed, vr is rated wind speed, PWR is the 
active power under the rated wind speed, v is the wind speed value of the wind farm 
According to the aerodynamics, the wind turbine electric power is proportional to the third power 
of wind speed; its output power can be expressed as: 
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Where, PW is he active power. 
 
2.3. Fault Model of Wind Turbine 

Wind turbine three-state fault model including operation, derating and outage status is 
shown as: 
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Figure 3. Wind turbine multi-state fault model 
 
 
where   and d  are outage and derating rate, respectively;   and d  are repair rate, 

respectively. 
Generally, wind turbine outages and derating state are random event, the Markov method is 
applied to state space diagram shown in Figure 2, the results are shown as: 
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where foP  and doP  are the probability of outage and derating state, respectively. 

According to the law of large numbers, wind turbine status can be expressed as: 
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where S represents the operational status of the wind turbine, foP  is the outage probability of 

the wind turbine; doP
 
is the probability of derating state; U  is uniformly distributed random 

number in [0, 1]. 
 

2.4. Wind Farm Output Model 
According to equation (5) and (7), the output power of the wind turbine is: 
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where iPG  is the output of i wind turbine,  xW vP  is absorbed energy of the wind turbine under 

wind speed  xv ,   is derating factor. 

The active output of the wind farm can be expressed as: 
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where, m represents the number of the WTG. 
 
 
3. Latin Hypercube Sampling Method 

Latin Hypercube sampling is a stratified sampling method which could effectively reflect 
the overall distribution of the random variables using sampled values. Its main purpose is to 
ensure that all sampling areas can be covered by sampled points. The procedure of LHS 
method can be divided into two main steps: sampling and permutation. 

 
3.1. Sampling 

Assuming the probability cumulative function of Xk is represented as: 
 

 kkk XFY           (10) 
 

For a sample size N, the range of Yk is divided into non-overlapping intervals of 
equivalent length. One sampling value is chosen from each interval by choosing the midpoint or 
selected randomly. In this study, the midpoint value is adopted and the range of Yk is set to [0 
1], the nth sample of Xkn can be determined by: 
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where N is the number of maximum samples. 
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The sample values of Xkn is then assembled in a row of the sampling matrix X, once all 
the input random variables are sampled, a primary sampling matrix can be obtained. 

 
3.2. Permutation 

The purpose of permutation is to eliminate or lower the correlation between the sampled 
values of the random variables. The original ordering matrix L is generated by random 
permutating 1, …, N in every row. Generally, the correlation coefficient is employed to assess 
the degree of correlation for ordering matrix L, shown as: 
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wher ij  is the correlation between i and j row of L, which can be obtained by: 
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All elements ij  calculated by equation (13) could form K×K order correlation matrix 

defined to be Lρ  which is positive definite and symmetric. Lρ  can be decomposed by the 

Cholesky decomposition into two  the product of two lower triangular matrices, shown as: 
 

TDDρL           (14) 

 
where D is a lower triangular matrix.  

Then a K×N matrix can be constructed by the equation (15) whose correlation matrix is 
an identity matrix, in other words, its correlation coefficient is equal to 0. 

 

LDG 1          (15) 
 
However, different from L, the data in matrix are not necessarily integer or positive and 

cannot be directly used to indicate ranks in the sampling matrix. So the rows of L are updated to 
be the ranks of the data in the corresponding row of G. It is proved that the correlation of L 
updated by G is less than the original one [16]; repeat this process until the L's correlation 
coefficient is less than a predetermined value. 

 
 
4. Reliability Assessment for Power Generation System With Wind Farm 

The power generation system reliability refers to the measure of the ability to meet the 
electricity and electrical energy needs of the power system for the uniform generators 
connected to grid. 

Process block diagram of reliability assessment for power generation system with wind 
farm based on Latin hypercube sampling Monte Carlo methods are shown as Figure 4. 

According to Figure 4, the basic steps of the reliability assessment of the generation 
system with wind turbine are shown as: 
1) Enter the raw data of the power system and wind farm: generating capacity load levels; 

wind turbine outage and derating rate; wind speed distribution parameters; maximum 
sampling frequency and minimum coefficient of variation; 

2) Calculate the number of input random variables K and determine the sample sizes N, then 
Generate K×N order Latin hypercube sampling matrix whose correlation will be reduced 
utilizing Cholesky decomposition method; 
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3) Determine the system state using n columns sampling value of the Latin hypercube 
sampling matrix, when power shortage occur, calculate the loss of load and cumulative 
reliability index; 

4) ）if Sampling times exceed the maximum sampling time, then the sampling end, otherwise, 
n = n +1 go to step 2. 

5) Calculate the reliability index. 
 
 

maxNn 

 
 

Figure 4. Process block diagram of reliability assessment 
 
 
5. Simulation Results 
5.1. Simulation Example Description 

Computational analysis are carried out using the improved RTS79 test system [17] 
which contains 32 coal-fired generators with total installed capacity of 3405MW with the basic 
annual load peak for 2850MW and one wind farm with installed capacity of 500MW. The 
parameters thermal generators are shown in Table 1; and the wind turbine parameters are 
shown in Table 2. 
 

Table 1. Parameters of thermal generators 
Capacity /(MW) Unit number Outage probability MTTF /(hours) MTTR /(hours) 

12 5 0.02 2940 60 

20 4 0.10 450 50 

50 6 0.01 1980 20 

76 4 0.02 1960 40 

100 3 0.04 1200 50 

155 4 0.04 960 40 

197 3 0.05 950 50 

400 2 0.12 1100 150 
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Table 2. Parameters of wind farm and load flow 

Capacity /(MW) Unit number f / (Occ/ye) f / (Occ/ye) d  /(Occ/ye) d  /(Occ/ye) Derating factor

5 100 7.96 58.4 5.84 43.8 0.6 

 

Wc /(m/s) Wk /(pu) Vci /(m/s) Vco /(m/s) Vr /(m/s) Eload /(MW) Vload /(MW) 

8.5 2 3 25 10 2250 150 

 
 
5.2. Method Validation 

There are total 134 input random variables (100 wind turbine units, 32 conventional 
generator units, 1 load and 1 wind speed) in this test system. The load and wind speed 
distributions are normal and Weibull, respectively, the wind and conventional generator running 
state distributions are binomial.  

The values of correlation coefficient of the ordering matrixes generated by random 
sampling and Latin hypercube sampling method, respectively of different sample sizes is shown 
in Table 3, it is obvious that the Latin hypercube sampling has a smaller value compared with 
random sampling. 
 
 

Table 3. The correlation coefficient of the sample matrix 
Sample sizes 200 400 600 800 1000 

Random sampling 0.0475 0.0170 0.0091 0.0059 0.0043 

Latin hypercube sampling 0.0100 0.0026 0.0011 0.0007 0.0004 

 
 

In order to compare the convergence rate of random sampling and Latin hypercube 
sampling methods, the reliability index EPNS (Expected Power Not Supplied) calculated  
according to equation (16) is adopted, and the sample sizes of two method are all set to 50000, 
respectively, the simulation results are shown in Figure 5. 
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where iP  represents the probability of the system in the state I, iF  is the load power cuts in the 

state I, S represents all the system states for power shortage. 
 
 

 
 

Figure 5. Reliability index EPNS of different sample times 
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Figure 5 is the convergence process of reliability index EPNS, from which we can see 
that the Latin hypercube sampling method has a faster convergence rate compared to random 
sampling method. 

In order to verify the Latin hypercube sampling method with a higher sampling efficiency 
compared to random sampling method, set the calculation accuracy to 0.02 and 0.04 for the two 
methods, respectively. The required sampling times for the same accuracy are shown in  
Table 4. 
 
 

Table 4. Sampling times in the same calculation accuracy 
Sample methods Reliability index Calculation accuracy Sampling sizes 

Random sampling EPNS 
0.04 15220 

0.02 42535 

Latin Hypercube 
Sampling 

EPNS 
0.04 8531 

0.02 21563 

 
 

As can be seen from Table 4, for the same accuracy, the Latin hypercube sampling 
requires less sampling times compared to random sampling, in other words, the former has a 
higher sampling efficiency than the latter. 
 
5.3. Sensitivity analysis of model parameters 

System reliability index of different derating factor are shown as Figure 6. System 
reliability index EPNS of different scale parameters are shown as Figure 7. 
 
 

 
 

Figure 6. Reliability index EPNS of different derating factor of wind turbine 
 
 

 
 

Figure 7. Reliability index EPNS of different scale parameter of wind speed 
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In the figure 6 shown above, the derating factor of 0 indicates that the derating state 
equivalent to the outage state, as 1 equivalent to running state, It can be seen that the derating 
of the wind turbine have a certain impact on system reliability index EPNS, so in actual 
assessment the appropriate derating factor should be selected. 

From the figure 7 we can see that with the increase of the scale parameter, the 
reliability EPNS of the system is first increased, and then reduced. 
 
 
6. Conclusion 

This paper utilizes the Latin hypercube sampling combined with Cholesky 
decomposition method into Monte Carlo simulation for solving the large sample size and low 
efficiency problems. And apply it to power system reliability assessment aspects. The test 
examples have illustrated that Latin hypercube sampling method has a faster convergence rate 
and can achieve a better sampling efficiency than random sampling method. 

Derating state as one of the wind turbine state has some influence on the reliability of 
the system, so it should be considered in the reliability modeling of wind turbine. The scale 
parameter of the wind farm speed has a greater influence on the reliability of the system, and its 
recognition accuracy has a direct impact on the reliability assessment results of the system. 
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